Sparse support vector regression based on orthogonal forward selection for the generalised kernel model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse support vector regression based on orthogonal forward selection for the generalised kernel model

This paper considers sparse regression modelling using a generalised kernel model in which each kernel regressor has its individually tuned centre vector and diagonal covariance matrix. An orthogonal least squares forward selection procedure is employed to select the regressors one by one, so as to determine the model structure. After the regressor selection, the corresponding model weight para...

متن کامل

Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel model

A sparse regression modelling technique is developed using a generalised kernel model in which each kernel regressor has its individually tuned position (centre) vector and diagonal covariance matrix. An orthogonal least squares forward selection procedure is employed to append the regressors one by one. After the determination of the model structure, namely the selection of an appropriate numb...

متن کامل

Parsimonious Support Vector Regression using Orthogonal Forward Selection with the Generalized Kernel Model

Sparse regression modeling is addressed using a generalized kernel model in which kernel regressor has its individually tuned position (center) vector and diagonal covariance matrix. An orthogonal least squares forward selection procedure is employed to append regressors one by one. After the determination of the model structure, namely the selection certain number of regressors, the model weig...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

An orthogonal forward regression technique for sparse kernel density estimation

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2006

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2005.12.129